If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8u^2-18u-7=0
a = -8; b = -18; c = -7;
Δ = b2-4ac
Δ = -182-4·(-8)·(-7)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-10}{2*-8}=\frac{8}{-16} =-1/2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+10}{2*-8}=\frac{28}{-16} =-1+3/4 $
| 5s+13+69+95=180 | | 13+x+154=180 | | -118=2(5-8v) | | 9w^2-7w-16=0 | | 3(1/9x+15)-4=1+3x | | 30+v-5+2v-15=180 | | (2x+5)=(3x-6) | | 3x²+2x=0 | | b-45+2b-47+b-48=180 | | 2a°2-2a(a-8)=13 | | x+3=-4+2x | | 2a×2a(a-8)=13 | | 3x+3+-x+2=x+5 | | x=12/3*(3+4) | | 10z-48+9z+5z+12=180 | | 6x-14+3x-3=8x-12 | | 23x-1=45 | | x^2+x–6=0 | | -7x+49-6=43 | | 5n+3n-2=38 | | 13x+1=14-2 | | 31+4p-29+p+3=180 | | v2+v-90=0 | | 10)5(-5-3v)=-5(v+1) | | 125+x+39=180 | | 3x+16=35 | | -258+3j=-7(-2+-4j)+9j | | -2(x+8)=1/3(3x+15 | | 2.5x+10=x | | n-2=38 | | 2x+9=2x+41 | | 4a+3+3a-3+a+16=180 |